Микробный антагонизм

Глава 5. Антагонизм микробов и антибиотики

При антагонизме один вид микробов угнетает развитие других видов, а иногда и полностью уничтожает их. Явление антагонизма у микроорганизмов очень распространено. Различные виды микробов па протяжении длительной истории эволюции в борьбе за существование вырабатывали те или иные средства борьбы со своими конкурентами. Средства эти очень различны. Одни виды вытесняют другие своим обильным и очень быстрым размножением. Другие виды вырабатывают неспецифические и специфические вещества, которые подавляют рост многих микробов. К неспецифическим веществам относятся органические кислоты, спирты, перекиси, сероводород, аммиак и пр. Так, молочнокислые бактерии подавляют развитие гнилостных бактерий, образуя молочную кислоту. Дрожжи образуют спирт, который подавляет развитие других микробов. Эти вещества являются отходами в процессе обмена веществ.

Изменения рН среды, окислительно-восстановительный потенциал, поверхностное натяжение и другие физические факторы также могут вызвать задержку развития и гибель тех или иных микробов сообщества.

Конечно, явления антагонизма не являются совершенно неизменными. В условиях наиболее благоприятных для развития данного антагониста антагонистическое действие хорошо выражено. Но сильные антагонисты в неблагоприятных для них условиях сами могут быть подавлены теми микробами, которые в обычных условиях становятся их жертвами. Влагалищная палочка оказывает сильное антагонистическое действие на кишечную палочку в месте ее обитания – во влагалище, но погибает при попадании в кишечник – место обитания кишечной палочки.

Хорошо выражены антагонистические свойства у представителей нормальной микрофлоры, например: кишечной палочки в кишечнике взрослых людей, Bact. bifidum в кишечнике новорожденных детей.

Наибольшее количество антагонистов-микробов находится в почве, имеющей обильную микрофлору. Чем больше заселена почва микробами, тем острее между ними идет борьба за существование и тем чаще в ней встречаются микробы-антагонисты. Явление антагонизма между микробами начинают исследовать на практике для устранения вредной микрофлоры в почве. Соответствующей обработкой почвы, ведущей к обильному развитию антагонистов, можно подавить вредную микрофлору. На корнях (ризосфере) многих растений развивается микрофлора, содержащая мною различных антагонистов-микробов. Так, посев трав на загрязненную почву быстро освобождает ее от кишечной группы бактерий. Посев люцерны освобождает почву от фитопатогенного гриба – возбудителя вилта хлопчатника. Посев чеснока, ржи, пшеницы подавляет рост сибиреязвенной палочки.

Среди бактерий антагонистические свойства наблюдаются более часто у споровых палочек – Вас. mesentericus, Вас. subtilis и др. Среди неспоровых следует отметить чудесную палочку (Bact. prodigiosum) синегнойную палочку и др. Синегнойная палочка уничтожает палочки брюшного тифа, дизентерии, сибирской язвы, чумы и др. Особенно выражены антибиотические свойства у актиномицетов в отношении бактерий. Актиномицеты растут гораздо медленнее, чем бактерии. Но актиномицеты компенсируют этот недостаток тем, что выделяют в почву особые вещества, которые задерживают быстрый рост бактерий и даже вызывают гибель их.

В дальнейшем оказалось, что существуют микробы, у которых определенные продукты их обмена чрезвычайно сильно угнетают развитие и убивают микробов других видов. Эти вещества развились в процессе эволюции как специальные своеобразные орудия защиты и нападения против микробов других видов, с которыми они постоянно сталкиваются в природе.

Такие вещества называются антибиотиками. Они в настоящее время широко применяются в борьбе с инфекционными заболеваниями человека, животных и растений. Открытие и использование антибиотических веществ явилось одним из самых блестящих достижений микробиологии и медицины.

Антибиотиками (анти – против, биос – жизнь; против жизни микробов) называются специфические вещества, образуемые микроорганизмами, которые подавляют рост болезнетворных микробов в организме человека и животных. Антибиотики, в отличие от антисептиков, действуют избирательно, подавляя только определенные виды микробов. Для каждого антибиотика характерен свой набор подавляемых микробов или, иначе говоря, свой антимикробный спектр действия. Так. стрептомицин действует на большее количество разных видов микробов, чем пенициллин, – значит, спектр действия стрептомицина шире, чем у пенициллина.

Механизм действия антибиотиков заключается в подавлении определенных процессов в обмене веществ микробной клетки: процессов питания, дыхания, размножения и т. д. В структурном отношении вещества, угнетающие рост бактерий, находятся очень близко к веществам, стимулирующим их рост. Вследствие этой близости парализаторы роста захватываются клеткой, но не усваиваются ею, а, наоборот, выводят из строя ферменты, необходимые для жизнедеятельности клетки. Так, пенициллин нарушает обмен белков и нуклеопротеидов в микробной клетке. Антибиотик вызывает лишь первое повреждение возбудителя заболевания. Действие это главным образом бактериостатическое. Окончательная же гибель микроба происходит под действием естественных защитных сил в самом организме человека. Таким образом, лечебное действие антибиотиков сводится к совместным воздействиям антибиотика и организма человека. В больших дозах антибиотики оказывают и бактерицидное действие.

К лучшим и наиболее хорошо изученным антибиотическим препаратам относятся пенициллин и стрептомицин.

Пенициллин (C16H18O4N2S) – дипептид – исключительное по силе своего действия лекарство. Получается он из зеленой плесени пенициллиума (Pen. chrysogermm). Он действует против всех кокков, многих грамположительных бактерий, спирохет, но не оказывает действия на грамотрицательные бактерии, в частности на возбудителей кишечных инфекций, не действует он также на вирусы, риккетсии, протозоа.

Ввиду того что пенициллин быстро выводится из организма, его приходилось вводить больному через каждые три часа, это очень неудобно для больного. Теперь получены препараты с длительным действием: новоциллин вводят один раз в течение 48 часов, бициллин задерживается в организме больного до шести суток. Приготовлены пенициллины, которые не разрушаются желудочным соком и принимаются через рот в виде таблеток. Пенициллин был первым антибиотиком, получившим широкое распространение в лечении. В 1929 г. англичанин Флеминг подробно изучил задерживающее действие Penicillium notatura на гноеродный стафилококк и некоторые другие грамположительные бактерии. Извлечь пенициллин из культуральной среды химикам удалось лишь в 1940 г. (Флори, Чейн). И только во время второй мировой войны, когда была сильная потребность в новых действенных средствах для лечения раненых, пенициллин получил широкое применение.

До применения пенициллина от сепсиса (заражение крови) умирало 50-60% больных, от послеродового сепсиса – 70-80% рожениц. Теперь эти заболевания излечиваются пенициллином за 5-7 дней. Антибиотики намного превосходят действие противомикробных сульфамидных препаратов. Благодаря пенициллину и другим антибиотикам хирурги получили возможность делать операции на сердце, на мозге, в грудной полости, не боясь смертельных нагноений. Некоторые инфекции почти совсем перестали встречаться, другие протекают сравнительно легко. Недаром современную медицину называют эрой антибиотиков.

Стрептомицин (C6H18N6О4), получаемый из лучистого гриба Actinomyces globisporus, хорошо действует при тех болезнях, при которых помогает и пенициллин. Но у него более широкий антимикробный спектр действия. Стрептомицин оказался могущественным средством в борьбе с туберкулезом. Он применяется для лечения туберкулеза в комплексе с фтивазидом, паском и другими средствами. Туберкулезный менингит был неизлечим раньше и приводил детей быстро к смерти, теперь же при лечении стрептомицином дети, как правило, выздоравливают. Он является единственным средством для лечения людей от чумы.

Антибиотики тетрациклинового ряда – биомицин, тетрациклин, террамицин и др. – имеют еще более широкий спектр. Также широкое применение находят левомицетин, синтомицин, мономицин, нистатин и многие другие. Нистатин является антибиотиком против грибов, особенно дрожжеподобных из рода Кандида.

Сейчас идут большие работы по изысканию противоопухолевых антибиотиков.

Антимикробные вещества высших растений были исследованы Б. П. Токиным, который назвал их фитонцидами. Фитонциды образуются очень многими растениями. Они обнаружены в соке алоэ, бобов, различных злаков, горчицы, томатов, хрена, эвкалиптов, черемухи, березы и др. Они оказывают угнетающее действие на бактерии, актиномицеты, грибы, простейшие, насекомые, а также на фаги. Более всего фитонцидов содержат лук и чеснок. Соки или кашица из последних, а также выделяемые ими летучие вещества убивают в течение нескольких минут стафилококки, стрептококки, кишечную и дизентерийную палочки и др. Фитонциды представляют собой защитное средство высших растений от микроорганизмов.

Антибактериальных веществ из животных тканей немного. Проф. З. В. Ермольева получила антибиотик экмолин из молок осетровых рыб. Применяют его больше совместно с пенициллином и другими антибиотиками для усиления и удлинения их действия на микробы. Также он предложен для профилактики и лечения катаральных явлений в верхних дыхательных путях при гриппе.

Лизоцим находится в яичном белке, в слюне, слезах, мокроте, в различных органах животных (печень, почки и др.). Он растворяет живые и мертвые сапрофитные микробы, является естественным защитным фактором организма в отношении микробов. Таким же защитным фактором, но против вирусов является интерферон, который также относится к антибиотикам.

Кроме лечения инфекционных заболеваний человека и животных, в настоящее время антибиотики находят широкое применение: 1) для стимуляции роста и продуктивности животных; 2) для профилактики отдельных массовых бактериальных и грибковых заболеваний растений и животных; 3) для консервирования различных пищевых продуктов. При таком консервировании максимально сохраняются витамины и питательные вещества, разрушающиеся при термических методах стерилизации.

Частым осложнением при лечении антибиотиками является превращение чувствительных к антибиотику микробов в устойчивые, нечувствительные формы. В борьбе за жизнь болезнетворные микробы начинают приспосабливаться к воздействию антибиотиков, привыкают к ним, получают способность переносить всевозрастающие их дозы. Здесь особенно ярко проявляется распространенное в мире микробов свойство их приспособительной изменчивости. Антибиотикоустойчивость особенно резко выражена к пенициллину и стрептомицину, первыми вошедшими в лечебное применение. Так, в 1940 г., когда начал применяться пенициллин, 100% стафилококков были чувствительны к нему. В 1945 г. количество чувствительных к пенициллину стафилококков снизилось на 21,5%, в 1948 г. – на 48%, а в 1962 г. – на 75%. Поэтому в последнее время получено много новых антибиотиков, таких, как эритромицин, олеандомицин и др., с хорошим спектром действия, к которым микроорганизмы еще не приобрели устойчивости. Многие из них пока не применяются на практике, и являются антибиотиками резерва. Они заменяют антибиотики, в отношении которых уже имеется много устойчивых возбудителей заболеваний.

Приобретенная устойчивость микробом передается по наследству из поколения в поколение. Если такой антибиотикоустойчивый микроб например, к пенициллину, вызывает заболевание у здорового человека, то лечение его пенициллином не будет эффективным, нужно применить другой антибиотик. Поэтому в настоящее время перед лечением антибиотиками необходимо проверить, к какому антибиотику возбудитель заболевания нечувствителен. Для этого в лаборатории делают сплошной посев микроба на поверхность агаровой питательной среды и в разных местах кладут на посев небольшие кружки (диски) фильтровальной бумаги, пропитанные разными антибиотиками. Нечувствительные микробы дадут рост непосредственно вокруг диска, а чувствительные микробы дадут рост только в некотором отдалении от диска, вблизи же диска рост будет задержан.

Антибиотикоустойчивость развивается при неправильном пользовании антибиотиками, когда применяются недостаточные дозы, особенно с частыми перерывами. Механизм образования этой устойчивости еще недостаточно изучен. Он может быть различным. Некоторые микробы приобретают свойство вырабатывать фермент, разрушающий пенициллин, – пенициллиназу. Устойчивость может быть результатом возникновения новых путей обмена, при помощи которых микробная клетка продолжает существовать без тех ферментов, которые вышли из строя. Возможно, имеют значение физико-химические изменения поверхности микробной клетки, приводящие к различной способности фиксировать антибиотик. Так, устойчивые микробы связывают меньшее количество пенициллина, чем чувствительные. Антибиотикоустойчивость микробов может возникнуть в результате мутационной изменчивости. В отдельных случаях приобретенная устойчивость микроба к одному антибиотику может сопровождаться повышением чувствительности к другому и, наоборот, повышением устойчивости к какому-либо иному антибиотику без контакта с последним.

При длительном использовании некоторых антибиотиков, особенно стрептомицина, микроорганизмы настолько приспосабливаются к развитию в присутствии этого антибиотика, что без последнего уже не могут расти. Антибиотик становится потребностью нормального питания этого микроба. Такие штаммы микробов называются антибиотикозависимыми, ибо жизнь их становится возможной только в присутствии данного антибиотика.

Одним из тяжелых осложнений от применения антибиотиков является возникновение суперинфекции (дополнительной инфекции). Антибиотики особенно широкого спектра действия подавляют не только возбудителя заболевания, но и нормальную микрофлору организма, главным образом кишечника и дыхательных органов. При этом заболевание может под воздействием антибиотика закончиться благополучно, но некоторые представители нормальной микрофлоры, не поддавшиеся действию антибиотика, не встречая конкуренции со стороны подавленных видов, начинают бурно развиваться и вызывать различные поражения организма вплоть до общей инфекции. К такого рода заболеваниям относятся кандидомикозы, вызываемые дрожжеподобным грибом Candida albicans, а также колиты (воспаление слизистой толстых кишок), вызываемые устойчивыми к пенициллину стафилококками, протейными и другими гнилостными палочками, на которые антибиотик не действует.

Читайте также:  Бусерелин (Buserelin) - инструкция по применению, состав, аналоги препарата, дозировки, побочные действия

Надо еще иметь в виду один недостаток антибиотиков. Иногда они могут вызывать у отдельных лиц повышенную чувствительность. При повторном лечении пенициллином у таких лиц возникают различные аллергические реакции (крапивница, кожный зуд, боль в суставах и пр.).

Все эти недостатки антибиотиков заставляют ученых все время производить исследовательскую работу. Научная работа проводится в двух направлениях. Во-первых, производятся обширные поиски новых антибиотиков, более совершенных, к которым микробы не имеют устойчивости. Для этого выделяют из почвы и других источников новые культуры актиномицетов, плесеней, бактерий с антагонистическими свойствами. Обычно эти природные антагонисты не особенно активны, это, так сказать, “дички” по сравнению с культурными, применяемыми в производстве. Поэтому микробиологи, генетики и селекционеры подвергают их различным физическим (ультрафиолетовые, рентгеновские лучи, быстрые нейтроны) или химическим воздействиям для повышения образования ими антибиотических веществ в десятки, сотни раз. Так, плесневой гриб, которым пользуются в настоящее время в производстве пенициллина, также в свое время подвергался такому воздействию. В результате его активность была увеличена в несколько сот раз по сравнению с исходным. А это значит, что при одном и том же оборудовании можно получать продукции в сотни раз больше.

Другое направление – это усовершенствование уже существующих препаратов, и в первую очередь пенициллина. Было выделено “ядро” пенициллина 6 – аминопенициллановая кислота. На основе этого ядра химики получили возможность образовывать самые разнообразные полусинтетические пенициллины. Так получен уже пенициллин, уничтожающий пенициллиноустойчивые культуры микробов. Полусинтетический пенициллин – ампициллин имеет более широкий спектр действия, он губит возбудителей кишечных инфекций, на которые раньше не действовал. Для лечения заболеваний легких получен пенициллин, по преимуществу скапливающийся в легких. Подобная работа ведется и в отношении других антибиотиков.

Приготовление пенициллина и других антибиотиков в настоящее время представляет собой огромное заводское производство.

В лаборатории такого завода всегда сохраняется чистая культура микроорганизма, из которой в производстве получают соответствующий антибиотик. Эта культура (штамм) должна обладать свойством образовывать большие количества антибиотического вещества на специальной питательной среде. Активность, или сила, антибиотика определяется единицами действия (ЕД). ЕД – то наименьшее количество антибиотика, которое задерживает развитие тест-микроба на питательной среде. Тест-микробом обычно служит стандартная культура гноеродного стафилококка. За единицу действия пенициллина принимается 0,6 микрограмм (мкг) очищенного кристаллического препарата.

Для промышленного производства пенициллина применяется штамм Pen. chrysogenum, активность которого была увеличена за 17 лет до 3000 единиц в мл методом вегетативной гибридизации, отбора и воздействия различных физических факторов (ультрафиолетовых, рентгеновских лучей).

Гриб выращивают в глубине жидкой питательной среды при хорошем ее аэрировании и при температуре 20-25° в специальных ферментерах или танках емкостью в десятки тысяч литров. Гриб растет несколько суток и выделяет в питательную жидкость антибиотическое вещество. Конечно, вся аппаратура и все процессы должны проводиться совершенно стерильно. Дальше определяют ЕД полученного антибиотического вещества, производят микробиологический и биохимический контроль. Затем производят выделение из питательной жидкости антибиотического вещества и определяют его концентрацию путем экстракции, адсорбции или осаждения, т. е. физико-химическим путем. В результате получается кристаллический порошок, который расфасовывается в ампулы или пузырьки.

В настоящее время учение об антибиотиках вылилось в огромную и важную область прикладной микробиологии с мощной производственной базой для изготовления различных биопрепаратов и с многочисленными кадрами исследователей.

АНТАГОНИЗМ МИКРОБОВ

Расстановка ударений: АНТАГОНИ`ЗМ МИКРО`БОВ

АНТАГОНИЗМ МИКРОБОВ — биологическая несовместимость микроорганизмов различных видов.

А. м. известен со времен Пастера, наблюдавшего подавление развития бацилл сибирской язвы микробами других видов. Известны примеры угнетения бацилл сибирской язвы, ко-ринебактерий дифтерии и других гемолитическими стрептококками; молочнокислые бактерии подавляют рост грамотрицательных энтеробак-терий различных видов, в т. ч. условнопатогенных, населяющих кишечник человека и животных. Много антагонистов найдено среди представителей родов Pseudomonas, Esche-richia, Shrgella, Salmonella, действующих преимущественно на близкородственных бактерий. Такой (межродовой) тип А. м., по-видимому, имеет место у большинства систематических групп бактерий.

Специфический характер антагонистической активности узкого спектра связан со способностью бактерий продуцировать белковоподобные вещества, способные подавлять рост микробов (см. Бактериоциногения).

Неспецифический А. м. определяется различной интенсивностью роста бактерий в ассоциациях, особенно при условии одинаковых потребностей в источниках питания. В искусственных условиях могут быть воспроизведены явления «насильственного антагонизма», при к-ром одни микробы вынуждены питаться за счет других вследствие отсутствия иных источников питания.

А. м. постоянно проявляется в ассоциациях бактерий, формирующихся естественным путем в нестерильных полостях организма людей и животных, причем наиболее полно в условиях, оптимальных для физиологического развития микробов-антагонистов. В итоге изучения антагонистических взаимоотношений между микроорганизмами различных и весьма отдаленных систематических групп особое значение приобрела специальная область микробиологии — учение об антибиотиках (см.).

Методы определения антагонистической активности основаны на выявлении зон подавления роста чувствительных бактерий при смешанном культивировании на плотных средах или на определении соотношения количества колоний антагониста и индикаторных бактерий, выросших после высева смеси в жидкой среде.

На плотных средах применяют метод штрихового посева и метод макроколоний.

Метод штрихового посева, при к-ром заведомо известный или предполагаемый антагонист засевается полосой по диаметру чашки с питательным агаром по его поверхности или в специально вырезанную «канавку», в к-рую помещают взвесь бактерий испытуемого штамма в полуостывшем агаре. Микробы, проверяемые по чувствительности к антагонистическому действию, засеваются перпендикулярными штрихами, как показано на рис. 1. Степень чувствительности в этом случае определяется по величине расстояния от центральной полосы культуры антагониста до начала выраженного роста бактерий, засеянных перпендикулярными штрихами.


Рис. 1. Штриховой посев при испытании антагонистической активности бактерий: вертикальная полоса — рост микроба-антагониста; горизонтальные полосы — колонии микробов, проверяемых на чувствительность. Разрыв в росте горизонтальных колоний свидетельствует о степени чувствительности испытуемых микробов к микробу-антагонисту

Метод макроколоний используют обычно при испытании бактериоциногенной (антагонистической) активности нескольких штаммов бактерий, проверяемой одним индикаторным штаммом, к-рый засевается вторым слоем в смеси с полужидким агаром после предварительной обработки хлороформом бактерий, развившихся в виде макроколоний (рис. 2).


Рис. 2. Метод макроколоний для выявления антагонистической активности штаммов бактерий. Отсутствие роста (черный кружок вокруг колонии) свидетельствует о степени чувствительности испытуемых микробов к микробу-антагонисту

Определение антагонистической активности бактерий в жидкой среде осуществляется путем посева двух изучаемых видов в определенных количественных соотношениях с последующим высевом на плотную среду совместно инкубируемых бактерий через определенные интервалы. Высев производят с таким расчетом, чтобы на чашке выросли изолированные колонии, доступные количественному учету. По отношению числа выросших колоний тест-микроба (индикаторной культуры) к числу колоний микроба-антагониста определяют индекс антагонистической активности.

Антагонистическую активность можно определять по способности задерживать рост индикаторных бактерий культуральной жидкостью, в к-рую выделяются бактериоцины в процессе роста микроба-антагониста.

Для этой цели используют метод «лунок». При соблюдении стерильности на пластинке агара в чашке Петри металлическими или стеклянными цилиндриками определенного диаметра (6—8 мм) выбирается столбик агара и удаляется. На его месте образуется углубление — лунка, в к-рую помещается испытуемая на антагонистическую активность культуральная жидкость. На одной чашке можно разместить 6—8 лунок. Перед внесением в лунки испытуемого субстрата поверхность агара орошается суспензией индикаторных бактерий, дающих равномерный газон (рост) при отсутствии антагонистического действия или рост на различных расстояниях от края лунки с культуральной жидкостью. Внося в лунки различные разведения исходной жидкости, можно определить титр антагонистической активности в условных единицах.

Важнейшее практическое значение в мед. микробиологии имеет правильное представление о динамике изменений в составе микрофлоры организма человека, особенно кишечника, и о возможных путях нормализации микробного ценоза при резких нарушениях количественного и качественного состава микрофлоры, ведущих к состоянию дисбактериоза (см.).

Одним из путей искусственного вмешательства в формирование нормального микробного ценоза или предотвращения возможных его нарушений является применение бактерийных препаратов, основным компонентом к-рых должны быть микробы, антагонистически действующие в отношении нежелательной, условно патогенной микрофлоры. Такие препараты, используемые в целях бактериотерапии, применяются довольно широко. В основу их конструирования положены идеи И. И. Мечникова, обосновавшего возможность целенаправленного изменения состава кишечной флоры путем введения живых микробов, способных подавлять развитие патогенных бактерий в силу высокой антагонистической активности. Предложенный Мечниковым лактобациллин применяется до наст.^ времени наряду с новыми бактерийными препаратами (ацидофилин, колибактерин и др.).

Определенное значение имеют исследования, направленные на конструирование бактерийных препаратов, для предотвращения развития дисбактериозов у людей, вынужденных длительное время находиться в относительной и даже абсолютной изоляции, в так наз. «экстремальных условиях»:в антарктических экспедициях, в экипажах подводного флота, в длительных космических полетах. При создании новых комплексных препаратов важно использовать различные типы антагонистических взаимоотношений бактерий как по спектрам ингибиторной активности, так и по физиологическим характеристикам, обеспечивающим большую скорость размножения антагониста в организме, способность к приживлению или, по крайней мере, длительной персистенции, в условиях различных нарушений нормального микробиоценоза.

Общебиологическое значение А. м. в наст, время определяется уровнем исследований, широко проводящихся во всех странах мира в генетическом, биохимическом и экологическом аспектах. Понятие об антагонизме основывается на современных представлениях о конкретных механизмах, которые весьма различны, несмотря на сходное фенотипическое выражение антагонистической активности микробов. Использование микробов-антагонистов широкого спектра активности осуществляется в промышленном производстве антибиотиков; бактериоциногенная активность и способность синтезировать ферменты, разрушающие антибиотики, являются предметом изучения синтетических процессов, детерминируемых внехромосомными генетическими элементами (см. Эписомы), с большим постоянством выявляемыми у микробов в естественных условиях их обитания. Широкое распространение в природе антагонистов, имеющих селективные преимущества перед чувствительными к ним микробами, может иметь значение в процессах формирования типов микробиоценоза человека и животных.

Библиогр.: Ваксман З. А. Антагонизм микробов и антибиотические вещества, пер. с англ., М., 1947; Красильников Н. А. Актиномицеты-антагонисты и антибиотические вещества, М.—Л., 1950, библиогр.; Перетц Л. Г. Значение нормальной микрофлоры для организма человека, М., 1955; Шиллер И. Г. Направленный антагонизм микробов, Киев, 1952; Nissle A. Die normaien Darmbakterien und ihre Bedeutung für den Organismus, Handb. pathogen. Mikroorgan., hrsg. v. W. Kolle u. a., Bd 6, T. 1, S. 391, Jena u. a., 1929.

  1. Большая медицинская энциклопедия. Том 1/Главный редактор академик Б. В. Петровский; издательство «Советская энциклопедия»; Москва, 1974.- 576 с.

Антагонизм среди микробов. Работы И. И. Мечникова в этой области. Микробы- антагонисты как продуценты антибиотиков

Анти­биотики — вещества природного происхождения, обладающие выраженной биологигеской активностью. Они могут быть получены из микробов, расте­ний, животных тканей и синтетическим путем.

Основными продуцентами антибиотиков служат микроорганизмы, обитающие в почве и воде, где они постоянно вступают между собой в самые разнообразные взаимоотношения. Последние могут быть нейтральными, взаимовыгодными (на­пример, деятельность гнилостных бактерий создает условия для деятельности ни­трифицирующих бактерий), но очень часто они являются антагонистическими. И это понятно. Только таким путем в природе могло сложиться сбалансированное сосуществование громадного числа видов живых существ. Антагонистические вза­имоотношения между бактериями наблюдал еще Л. Пастер. И. И. Мечников пред­ложил использовать антагонизм между бактериями на пользу человеку. Он, в част­ности, рекомендовал подавлять активность гнилостных бактерий в кишечнике че­ловека, продукты жизнедеятельности которых, по его мнению, сокращают жизнь человека, молочнокислыми бактериями.

Механизмы микробного антагонизма различны. Они могут быть связаны с кон­куренцией за кислород и питательные вещества, с изменением рН среды в сторону, неблагоприятную для конкурента, и т. д.

Одним из универсальных механизмов микробного антагонизма является синтез химических веществ-антибиотиков, которые либо подавляют рост и размножение других видов микроорганизмов (бактериостатическое действие), либо убивают их (бактерицидное действие).

Читайте также:  Микосептин от грибка ногтей, стопы (на ногах) - инструкция по применению для детей и взрослых,

Химиотерапия и химиопрофилактика инфекционных болезней. Антибиотики. Принципы их лечебного применения. Методы определения чувствительности бактерий к антибиотикам. Осложнения при антибиотикотерапии и их предупреждение.

Химиотерапия — специфическое антимикробное, антипаразитар­ное лечение при помощи химических веществ. Эти вещества обла­дают важнейшим свойством — избирательностью действия против болезнетворных микроорганизмов в условиях макроорганизма.

Анти­биотики — вещества природного происхождения, обладающие выраженной биологигеской активностью. Они могут быть полугены из микробов, расте­ний, животных тканей и синтетигеским путем

Рациональное лечение антибиотиками должно строиться на основе знания инди­видуальных особенностей пациента, течения заболевания, биологии возбудителя и его отношения к антибиотикам, а также свойств назначаемого препарата (препаратов). По мнению С. М. Навашина, необходимо придерживаться следующих основ­ных принципов рациональной антибиотикотерапии:

1) выделение и идентификация возбудителя, изучение его антибиотикограммы;

2) выбор наиболее активного и наименее токсичного препарата;

3) определение оптимальных доз и методов введения на основе знания особенно­стей кинетики антибиотика в организме больного для создания в крови, жидкостях и тканях организма терапевтических концентраций, превышающих в 2—3 раза ми­нимальную подавляющую концентрацию для данного возбудителя;

4) своевременное начало лечения и проведение курсов антибиотикотерапии не­обходимой продолжительности вплоть до полного закрепления терапевтического эффекта;

5) знание характера и частоты побочных явлений при назначении антибиотиков, особенно в условиях нарушения их распределения в организме больного при неко­торых патологических состояниях, например почечно-печеночной недостаточности;

6) комбинирование антибиотиков между собой и с другими препаратами с целью усиления антибактериального эффекта, улучшения их фармакокинетики и сниже­ния частоты побочных явлений.

Чаще всего для определения чувствительности бактерий к антибиотикам используются два метода: метод диффузии в агар с приме­нением стандартных дисков, пропитанных антибиотиком, и метод серийных разве­дений антибиотика.

–Осложнения. При неоднократном или длительном применении, наблюдаются нежелательные реакции, которые можно разделить на следующие 4 группы: аллергические, токсические, эндотоксические и дисбактериозы.

Аллергические реакции наблюдаются в тех случаях, когда антибио­тик выступает в качестве аллергена. Могут носить ха­рактер крапивницы, дерматита, сыпи, ринита и т. п. Наибольшую опасность представ­ляет пенициллиновый шок — реакция гиперчувствительности немедленного типа.

Токсические реакции возникают чаще всего в связи с органотропным фармакодинамическим действием антибиотика и при продолжительном лечении. Проявля­ются в виде поражения вестибулярного аппарата (неомицин, канамицин, стрепто­мицин), почек (полимиксин, неоми­цин, мономицин, стрептомицин), периферических нервов, различных поражений ЦНС (циклосерин, неомицин, поли­миксин) и других нарушений.

Наиболее тяжелым бывает токсическое воздействие на кровь: агранулоцитоз, апластическая анемия (левомицетин).

Эндотоксические реакции развиваются в тех случаях, когда под влиянием ан­тибиотика происходит массовое разрушение грамотрицательных бактерий, со­провождающееся выделением и поступлением в кровь их эндотоксина (липополисахарида).

Одним из самых частых осложнений, особенно при длительном применении ан­тибиотиков с широким антимикробным спектром, являются дисбактериозы.

5. Микрофлора воздуха. Роль воздуха в распространении возбудителей инфекцион­ных болезней. Методы исследования микрофлоры воздуха.

Микробиологический контроль возду­ха проводится с помощью методов естест­венной или принудительной седиментации микробов. Естественная седиментация (по методу Коха) проводится в течение 5—10 мин путем осаждения микробов на поверхность твердой питательной среды в чашке Петри. Принудительная седиментация микробов осуществляется путем «посева» проб воздуха на питательные среды с помощью специаль­ных приборов (импакторов, импинджеров, фильтров). Импакторы — приборы для при­нудительного осаждения микробов из воздуха на поверхность питательной среды (прибор Кротова, пробоотборник аэрозоля бактерио­логический и др.). Импшджеры — приборы, с помощью которых воздух проходит через жидкую питательную среду или изотоничес­кий раствор хлорида натрия.

Санитарно-гигиеническое состояние воз­духа определяется по следующим микробио­логическим показателям:

1. Общее количество микроорганизмовв 1 м 3 воздуха (так называемое общее микробное число, или обсемененность воздуха) — коли­чество колоний микроорганизмов, выросших при посеве воздуха на питательном агаре в чашке Петри в течение 24 ч при 37 °С, выра­женное в КОЕ;

2. Индекс санитарно-показательных микро­бов—количество золотистого стафилококка и гемолитических стрептококков в 1 м 3 воздуха. Эти бактерии являются представителями мик­рофлоры верхних дыхательных путей и имеют общий путь выделения с патогенными микроор­ганизмами, передающимися воздушно-капель­ным путем. Появление в воздухе спорообразующих бактерий — показатель загрязненности воздуха микроорганизмами почвы, а появление грамотрицательных бактерий — показатель воз­можного антисанитарного состояния.

Для оценки воздуха лечебных учреждений мож­но использовать данные из официально рекомен­дованных нормативных документов.

Не нашли то, что искали? Воспользуйтесь поиском:

Формы, биологическое значение и методы выявления антагонизма у микробов

Микробный антагонизм (от греч. antagonizomai — борюсь, соперничаю), при котором один вид микробов угнетает развитие других, довольно широко распространен в природе. Антагонистические отношения между микроорганизмами выработались на протяжении длительного периода эволюции в борьбе за существование. Такие взаимоотношения особенно выражены у микроорганизмов, которые конкурируют с другими видами в местах естественного обитания. Например, в почве находится множество различных видов микроорганизмов, многие из которых выделяют вещества, губительно действующие на другие виды микробов. Эти вещества назвали антибиотиками (от греч. anti — против, bios — жизнь). В настоящее время их широко используют для лечения инфекционных заболеваний человека, животных и растений. Открытие, изучение и использование антибиотиков является одним из выдающихся достижений нашего времени. Антибиотические вещества можно не только получить в результате жизнедеятельности микроорганизмов, но и выделить из тканей животных, растений. Поэтому в настоящее время антибиотиками называют продукты обмена любых организмов, способные избирательно убивать микроорганизмы или подавлять их рост. С открытием противоопухолевых антибиотиков сфера их применения расширилась: появились антибиотики, задерживающие рост новообразований.

Антагонизм микробов может выявиться при совместном выращивании двух и более видов микробов на жидкой или твердой среде. В опытах на жидкой среде антагонистическая активность определяется по изменению числа жизнеспособных клеток и популяциях конкурирующих видов за определенное время инкубации. Число колоний тест-микроба, приходящееся по истечении определенного времени на 100 колоний штамма-антагониста, называют антибиотическим индексом. Более прост и нагляден метод посева на поверхность плотной питательной среды. Испытуемый микроб засевают в центр чашки Петри или в канавку по ее диаметру, а вокруг него засевают тест-микробы разных видов (рис. 1 и 2). Этот метод широко применяют при изыскании новых антибиотиков. Антибиотик диффундирует в среду, подавляя в более или менее обширной зоне рост чувствительного микроба. Такой метод позволяет одновременно выявить и направленность антагонизма, и количество продуцируемого препарата.

Бактериоцины – факторы внутривидового антагонизма.

Бактериоцины – это вещества белковой природы или представленные белком в комплексе с липополисахаридами, но в любом случае за антибактериальную активность бактериоцина отвечает белок. Бактериоцины различаются не только по спектру действия, но и по физико-химическим, морфологическим и некоторым другим свойствам.

1) с низкой молекулярной массой, не осаждаются при ультрацентрифугировании, чувствительны к протеолитическому ферменту трипсину, термостабильны и неразличимы в электронном микроскопе;

2) с высокой молекулярной массой, которые легко осаждаются при ультрацентрифугировании, резистентны к ферменту трипсину, термолабильны, выявляются в электронном микроскопе как

фагоподобные структуры или их компоненты;

3) бактериоцины, для которых четко показана ферментативная активность.

По механизму действия на бактериальную клетку бактериоцины подразделяют на 4 основные группы:

ингибирующие окислительное фосфорилирование в цитоплазматической мембране;

блокирующие синтез белков;

нарушающие полупроницаемость цитоплазматической мембраны.

Антагонизм как форма конкурентных взаимоотношений может возникать:

• при совместном развитии микроорганизмов разных видов, нуждающихся в одних и тех же питательных веществах. Активно размножающиеся клетки первыми поглощают питательные вещества и занимают пространство. Например, флуоресцирующие псевдомонады за счет синтеза сидерофоров поглощают ионы железа, тем самым ограничивая рост других бактерий;

• образовании микроорганизмами веществ, которые изменяют среду, делая ее непригодной для развития других микроорганизмов. Характерным примером являются взаимоотношения между молочнокислыми и гнилостными бактериями в молоке. Сущность «пассивного» антагонизма состоит в том, что угнетение роста одного вида микроорганизмов другим может происходить только при определенных, иногда крайне ограниченных условиях развития этих организмов. Такие условия обычно наблюдаются при лабораторном культивировании микроорганизмов. В обычных естественных условиях роста подобного проявления антагонизма, как правило, не бывает.

При «активном» антагонизме угнетение роста или полное подавление жизнедеятельности одного вида микроба другим происходит в результате обогащения окружающей среды продуктами обмена, выделяемыми организмами при развитии. Однако при определенных концентрациях этих продуктов метаболизма организмы, их продуцирующие, могут развиваться свободно.

АНТАГОНИЗМ МИКРОБОВ

АНТАГОНИЗМ МИКРОБОВ — биологическая несовместимость микроорганизмов различных видов.

Антагонизм микробов известен со времен Пастера, наблюдавшего подавление развития бацилл сибирской язвы микробами других видов. Известны примеры угнетения бацилл сибирской язвы, коринебактерий дифтерии и других гемолитическими стрептококками; молочнокислые бактерии подавляют рост грамотрицательных энтеробактерий различных видов, в том числе условнопатогенных, населяющих кишечник человека и животных. Много антагонистов найдено среди представителей родов Pseudomonas, Esche-richia, Shrgella, Salmonella, действующих преимущественно на близкородственных бактерий. Такой (межродовой) тип антагонизма микробов, по-видимому, имеет место у большинства систематических групп бактерий.

Специфический характер антагонистической активности узкого спектра связан со способностью бактерий продуцировать белковоподобные вещества, способные подавлять рост микробов (см. Бактериоциногения).

Неспецифический антагонизм микробов определяется различной интенсивностью роста бактерий в ассоциациях, особенно при условии одинаковых потребностей в источниках питания. В искусственных условиях могут быть воспроизведены явления «насильственного антагонизма», при котором одни микробы вынуждены питаться за счет других вследствие отсутствия иных источников питания.

Антагонизм микробов постоянно проявляется в ассоциациях бактерий, формирующихся естественным путем в нестерильных полостях организма людей и животных, причем наиболее полно в условиях, оптимальных для физиологического развития микробов-антагонистов. В итоге изучения антагонистических взаимоотношений между микроорганизмами различных и весьма отдаленных систематических групп особое значение приобрела специальная область микробиологии — учение об антибиотиках (см.).

Методы определения антагонистической активности основаны на выявлении зон подавления роста чувствительных бактерий при смешанном культивировании на плотных средах или на определении соотношения количества колоний антагониста и индикаторных бактерий, выросших после высева смеси в жидкой среде.

На плотных средах применяют метод штрихового посева и метод макроколоний.

Метод штрихового посева, при котором заведомо известный или предполагаемый антагонист засевается полосой по диаметру чашки с питательным агаром по его поверхности или в специально вырезанную «канавку», в которую помещают взвесь бактерий испытуемого штамма в полуостывшем агаре. Микробы, проверяемые по чувствительности к антагонистическому действию, засеваются перпендикулярными штрихами, как показано на рис. 1. Степень чувствительности в этом случае определяется по величине расстояния от центральной полосы культуры антагониста до начала выраженного роста бактерий, засеянных перпендикулярными штрихами.

Метод макроколоний используют обычно при испытании бактериоциногенной (антагонистической) активности нескольких штаммов бактерий, проверяемой одним индикаторным штаммом, который засевается вторым слоем в смеси с полужидким агаром после предварительной обработки хлороформом бактерий, развившихся в виде макроколоний (рис. 2).

Определение антагонистической активности бактерий в жидкой среде осуществляется путем посева двух изучаемых видов в определенных количественных соотношениях с последующим высевом на плотную среду совместно инкубируемых бактерий через определенные интервалы. Высев производят с таким расчетом, чтобы на чашке выросли изолированные колонии, доступные количественному учету. По отношению числа выросших колоний тест-микроба (индикаторной культуры) к числу колоний микроба-антагониста определяют индекс антагонистической активности.

Антагонистическую активность можно определять по способности задерживать рост индикаторных бактерий культуральной жидкостью, в которую выделяются бактериоцины в процессе роста микроба-антагониста.

Для этой цели используют метод «лунок». При соблюдении стерильности на пластинке агара в чашке Петри металлическими или стеклянными цилиндриками определенного диаметра (6—8 мм) выбирается столбик агара и удаляется. На его месте образуется углубление — лунка, в которую помещается испытуемая на антагонистическую активность культуральная жидкость. На одной чашке можно разместить 6—8 лунок. Перед внесением в лунки испытуемого субстрата поверхность агара орошается суспензией индикаторных бактерий, дающих равномерный газон (рост) при отсутствии антагонистического действия или рост на различных расстояниях от края лунки с культуральной жидкостью. Внося в лунки различные разведения исходной жидкости, можно определить титр антагонистической активности в условных единицах.

Важнейшее практическое значение в медицинской микробиологии имеет правильное представление о динамике изменений в составе микрофлоры организма человека, особенно кишечника, и о возможных путях нормализации микробного ценоза при резких нарушениях количественного и качественного состава микрофлоры, ведущих к состоянию дисбактериоза (см.).

Читайте также:  Бактробан мазь назальная: инструкция по применению и для чего он нужен, цена, отзывы, аналоги

Одним из путей искусственного вмешательства в формирование нормального микробного ценоза или предотвращения возможных его нарушений является применение бактерийных препаратов, основным компонентом которых должны быть микробы, антагонистически действующие в отношении нежелательной, условно патогенной микрофлоры. Такие препараты, используемые в целях бактериотерапии, применяются довольно широко. В основу их конструирования положены идеи И. И. Мечникова, обосновавшего возможность целенаправленного изменения состава кишечной флоры путем введения живых микробов, способных подавлять развитие патогенных бактерий в силу высокой антагонистической активности. Предложенный Мечниковым лактобациллин применяется до настоящего времени наряду с новыми бактерийными препаратами (ацидофилин, колибактерин и др.).

Определенное значение имеют исследования, направленные на конструирование бактерийных препаратов, для предотвращения развития дисбактериозов у людей, вынужденных длительное время находиться в относительной и даже абсолютной изоляции, в так называнмых «экстремальных условиях»:в антарктических экспедициях, в экипажах подводного флота, в длительных космических полетах. При создании новых комплексных препаратов важно использовать различные типы антагонистических взаимоотношений бактерий как по спектрам ингибиторной активности, так и по физиологическим характеристикам, обеспечивающим большую скорость размножения антагониста в организме, способность к приживлению или, по крайней мере, длительной персистенции, в условиях различных нарушений нормального микробиоценоза.

Общебиологическое значение антагонизма микробов в настоящее время определяется уровнем исследований, широко проводящихся во всех странах мира в генетическом, биохимическом и экологическом аспектах. Понятие об антагонизме основывается на современных представлениях о конкретных механизмах, которые весьма различны, несмотря на сходное фенотипическое выражение антагонистической активности микробов. Использование микробов-антагонистов широкого спектра активности осуществляется в промышленном производстве антибиотиков; бактериоциногенная активность и способность синтезировать ферменты, разрушающие антибиотики, являются предметом изучения синтетических процессов, детерминируемых внехромосомными генетическими элементами (см. Эписомы), с большим постоянством выявляемыми у микробов в естественных условиях их обитания. Широкое распространение в природе антагонистов, имеющих селективные преимущества перед чувствительными к ним микробами, может иметь значение в процессах формирования типов микробиоценоза человека и животных.

Библиография: Ваксман З. А. Антагонизм микробов и антибиотические вещества, пер. с англ., М., 1947; Красильников Н. А. Актиномицеты-антагонисты и антибиотические вещества, М.—Л., 1950, библиогр.; Перетц Л. Г. Значение нормальной микрофлоры для организма человека, М., 1955; Шиллер И. Г. Направленный антагонизм микробов, Киев, 1952; Nissle A. Die normaien Darmbakterien und ihre Bedeutung für den Organismus, Handb. pathogen. Mikroorgan., hrsg. v. W. Kolle u. a., Bd 6, T. 1, S. 391, Jena u. a., 1929.

Микробы-антагонисты

Среди почвенных микроорганизмов имеются формы, которые угнетают развитие других микробов. Их принято называть антагонистами.
Между ингибиторами и антагонистами нет принципиальной разницы. Как те, так и другие действуют продуктами обмена веществ, особыми метаболитами: ингибиторы — на клетки высших организмов, антагонисты — на клетки низших существ. Впрочем, и это различие далеко не всегда является основным, ибо имеются ингибиторы, которые угнетают одновременно и микробов, и, наоборот, многие антагонисты действуют токсически на растения.
Вещества, образуемые ингибиторами, как уже отмечалось, принято называть токсинами или фитотоксинами, а вещества, продуцируемые антагонистами, называют антибиотиками. Такое подразделение тоже имеет чисто формальный, или условный, характер. Среди антибиотиков, как известно, имеется много таких, которые обладают резко токсическими свойствами для растений и животных.
Несмотря на эту относительность понятий и обозначений, антибиотики и их продуценты выделяются в особый раздел науки, и рассматриваются как особые вещества со специфическими проявлениями.
Антагонизм микробов давно привлекал внимание ученых. Еще Пастер, Мечников и их современники отмечали способность одних видов микробов подавлять развитие других видов. Пастер наблюдал проявление этой способности у сибиреязвенного бацилла по отношению к возбудителю куриной холеры. Мечников — у молочнокислых бактерий по отношению к гнилостным и некоторым кишечным формам бактерий. На этом принципе он разработал метод изменения кишечной флоры и оздоровления кишечника человека и животных. Явление антагонизма отмечалось среди различных представителей микроорганизмов, среди бактерий, грибов, актиномицетов, водорослей, простейших и др. Были описаны микробы-антагонисты, действующие против различных патогенных бактерий, против кокковых форм (стафилококков, стрептококков, пневмококков, диплококков), против возбудителей кишечных инфекций (дизентерии, паратифа, тифа, холеры), против туберкулезной палочки, возбудителя дифтерии, чумы, сибирской язвы, бруцеллёза, туляремии, газовой гангрены. Описано большое число антагонистов, действующих против патогенных грибов, дрожжей, протозойных организмов и др.
В последние годы внимание исследователей концентрируется на выявлении антагонистов, действующих против вирусов и злокачественных опухолей. Антагонисты против вирусов и опухолей находятся среди актиномицетов и бактерий.
В литературе накопился большой материал об угнетающем действии антагонистов на фитопатогенные бактерии, актиномицеты и грибы. Найдены антагонисты против различных грибов, бактерий, актиномицетов, простейших, против фагов, вирусов и других организмов. Наибольшее внимание уделяется антагонистам-актиномицетам.
Локхед и Лаудеркин установили среди 20 выделенных из ризосферы актиномицетов II культур, которые угнетали рост фитопатогенных штаммов актиномицетов — A. scabies.
Мередит и Семенюк установили, что среди изученных ими актиномицетов 21 % угнетает рост гриба Pythium graminicola, возбудителя некроза корней у ряда растений. Описаны актиномицеты-антагонисты к Chalaria quercina — возбудителю вилта у дуба, к Cerastomella ulni, поражающему древесные породы, вяз и др.
Петрушева выделила из почв Южного берега Крыма 31 культуру актиномицета. Из них 22 подавляли развитие грибов Thielaviopsis basicola — возбудителя корневой гнили табачной рассады и Fusarium sp. — возбудителя «черной ножки» у сеянцев цитрусовых. Лебен и Кейт имели коллекцию актиномицетов, которые подавляли 33 вида фитопатогенных грибов.
Купер и Чилтон провели большую работу по выявлению актиномицетов-антагонистов к одному широко распространенному в почвах Луизианы фитопатогенному грибу — Pythium arrhenomonas. Из 8302 выделенных штаммов антагонистов было 18,5—31,5%. Кублановская отмечает актиномицеты—антагонисты против возбудителя вилта хлопчатника — Verticillium dahliae и Fusarium vasinfectum. Лешевалье и другие испытали 197 штаммов актиномицетов к Cerastomella ulni, и только один из них был активен против этого гриба. В почвах находили антагонистов актиномицетов к фитопатогенным грибам — Helminthosporium sativum, Н. victoriae, Coletotricum circinans, Verticiilium albo-atrum и др.
В своих исследованиях мы находили в почвах актиномицеты, которые подавляли фитопатогенные грибы Fusarium lini, F. solani, F. vasinfectum, Helminthosporium sativum, Alternaria humicola, Rhizoctonia solani, Botrytis alii, Deuterophoma tracheiphilus, Trichoderma lignorum, Monila fructigena, а также грибы из рода Penicilltum, Aspergillus, Cladosporium, Verticillium и др.
Значительное количество антагонистов имеется среди грибов. Описаны антагонисты к возбудителям различных заболеваний: Fusarium, Peziza, Rhizoctonia, Ophiobolus, Botrytis, Monilia, Sporotrichum, Pythium, Phyma-totricum, Phytophthora, Sclerotium.
Портер описал антагонистические взаимоотношения грибов и бактерий-антагонистов с фитопатогенными грибами Helminthosporium, Fusarium. Санфорд и Бродфут изолировали из почвы 6 видов грибов, которые подавляли рост и активность гриба Ophiobolus graminis; Вейндлинг описал наблюдаемый им случай паразитизма гриба Trichoderma lignorum на грибах Rhizoctonia и пр. То же самое отмечал и Новогрудский. Последний автор приводит большой список грибов и бактерий-антагонистов с указанием угнетаемых ими видов грибов, а также бактерий.
В этом списке более 30 видов грибов подавляют свыше чем 50 других видов грибов, принадлежащих к разным родам и семействам. Антагонистов среди грибов находили многие другие исследователи.
Стессель, Лебен и Кейт изолировали из почв 170 грибов-антагонистов против грибов.
Анвэр нашел, что среди почвенных грибов и бактерий примерно половина (из 86 изученных) активно подавляет рост гриба Helminthosporium sativum, около 12% угнетает Fusanum lini. Грегори и другие выделили из разных почв 14 культур грибов, 29 штаммов актиномицетов и 31 штамм бактерий, которые активно подавляли рост гриба Pythium debaryanum. Три штамма актиномицетов и 1 штамм бактерий угнетали рост клубеньковых бактерий Rh. meliloti и Rh. trifolii.
He менее редко встречаются антагонисты к фитопатогенным микробам среди спороносных и неспороносных бактерий. В числе спороносных бактерий описаны антагонисты к различным фитопатогенным грибам. Портер приводит ряд бактерий, которые угнетают рост Helminthosporium. Последний не развивался в присутствии Вас. capsulatus, Вас. mesentericus, Вас. mycoides. Бамберг указал на подавление трибов Tilletia tritici, Ustilago zeae, U. levis, U. avenae спороносной палочкой — Bacillus D.
Аналогичное действие этих бактерий отмечалось в отношении таких фитопатогенных грибов, как Penicillium sp., Helminthosporium, Ophiobolus, Acrostalagmus, Fusarium, Sclerotinia gleosporium, Alternaria и др.
Немало описано антагонистических форм среди неспороносных бактерий. Исследования показывают, что они чаще встречаются среди представителей Pseudomonas и Bacterium, а также находятся и среди миксо-бактерий. Бисби описал вид Pseudomonas phaseoli, который угнетал гриб Fusarium exysporum. Фаусет называет Ps. juglandis как антагониста к грибу Dothiorella gregaris. Джонсон и Mypвин установили угнетающее действие нескольких неспороносных бактерий (Bacterium С-I; Bacterium X. и прочих), на рост грибов Ustilago zeae, U. avenae, Alternaria solani, A. brassicae, A. tenuis.
Худяков выделил и изучил подробно бактерии, растворяющие мицелий у грибов Fusarium graminearum, F. culmorum, F. scirpi, F. lini, F. herbarum, F. equiseti, затем Sclerotinia libertiana и др. Эти бактерии были названы миколитическими. Впоследствии их находили в почвах многие другие исследователи.
Арк и Хант имели культуры бактерий Вас. vulgatus и Вас. sp., которые подавляли рост многих фитопатогенных бактерий — Bact. amylovorum, Bact. aroideae, Bact. carotovorum, Bact. phytophthorum, Ps. campestris, Ps. lachrymans и др. Эти бактерии активно подавляли и некоторые грибы — Fusarium graminearum, F. lycopersici, Phytophthora sp. и др. Аналогичные данные приводят некоторые другие авторы.
Антагонисты к фитопатогенным грибам были описаны среди миксобактерий.
В литературе описаны грибы, поражающие нематод. Впервые они были отмечены М. С. Ворониным в работе «Микологические исследования», опубликованной в 1869 г., и Сорокиным в 1871 г. Сопрунов в ряде работ показал, что эти грибы по видовому составу различны и широко распространены в почвах. Большинство их относится к гифомицетам (Hyphomycetes) из рода Trichotheсium, Arthrobotrys, Dactylaria, Daсtylella и др.
Эти грибы захватывают нематод гифами и отравляют их своими метаболитами. Имеются попытки использовать данные грибы в борьбе с фитопатогенными формами нематод. Внесение в почву культур такого гриба снижает процент пораженности растений. В борьбе с нематодами, поражающими огурцы, грибы-антагонисты, или, как их называют, хищники, заметно снижают заболеваемость: в контроле на одно растение приходилось 23 галла, а у обработанных — 0,6 галла в среднем.
По данным Горленко искусственное обогащение почвы грибами-хищниками снижает заболеваемость огурцов в 1,5—7 раз. Тендетник применял грибы-хищники для обезвреживания шахт и других мест от патогенных личинок—анкилостомид, а равно и для уничтожения стронгилят в навозе инвазированных животных.
На основании имеющихся данных можно сказать, что среди бактерий, так же как и среди актиномицетов, проактиномицетов, микромоноспор, затем простейших (Protozoa), водорослей и пр., нет таких видов, против которых нельзя было бы подобрать антагониста. В лабораторной практике принято считать антагонистами только те микробы, которые подавляют общепринятые тест-организмы, составляющие обычно небольшой набор известных культур бактерий или грибов. При этом не учитывается, что так называемые неактивные формы (неантагонисты) к этим тестам могут быть активными по отношению к другим организмам. На основании своего опыта и литературных данных мы можем сказать, что свойство антагонизма присуще всем видам микроорганизмов, но проявляется оно по-разному и в различной степени в зависимости от природных свойств антагониста, с одной стороны, и чувствительности тест-организма с другой, а также от качества субстрата и других внешних условий.
Антимикробное действие антагонистов проявляется не только в лабораторных условиях, на искусственных питательных средах, но и в условиях естественного обитания, в самой почве. В стерильных почвах, где нет антагонистов, развитие микробов и вызываемые ими биохимические процессы протекают интенсивно. Ho стоит внести в такую почву антагониста, развитие микроба и биохимические процессы приостанавливаются или задерживаются.
Африкян в своих опытах направлял действие антагонистов из группы спороносных бактерий Вас. subtilis и Вас. mesentericus против бактерий — Вас. mycoides и Az. chroococcum. Результаты его исследований представлены в табл. 110.

Ссылка на основную публикацию